Journal of Organometallic Chemistry, 222 (1981) 175-185
Elsevier Sequoia S.A., Lausanne - Printed in The Netherlands

ACYL-PLATINUM(II) AND -PALLADIUM(II) COMPLEXES DERIVED FROM 2-HYDROXYBENZALDEHYDE DERIVATIVES. X-RAY STRUCTURE OF [Pt(OC $\left.\left.\mathrm{OH}_{6} \mathrm{CO}\right)\left(\mathrm{P}\left(p-\mathrm{CH}_{3} \mathrm{C}_{6} \mathrm{H}_{4}\right)_{3}\right)_{2}\right]$

C. ANKLIN, P.S. PREGOSIN *,
Laboratorium für Anorganische Chemie, ETH-Zentrum, Universitätstrasse 6, CH-8092 Stazione, Roma (Italy)
F. BACHECHI, P. MURA and L. ZAMBONELLI
Istituto di Strutturistica Chimica, "G. Giacomello', CNR, CP 10, I-00016 Monterotondo Stazione, Roma (Italy)

(Received July 3rd, 1981)

Summary

Platinum(II) and palladium(II) complexes containing chelating acyl ligands have been synthesized from salicylaldehyde, 2-hydroxynaphthaldehyde and 2-hydroxy-3-methoxybenzaldehyde. The platinum(II) complexes [Pt(acyl) L_{2}], acyl $=\mathrm{OC}_{6} \mathrm{H}_{4} \mathrm{CO}, \mathrm{OC}_{10} \mathrm{H}_{6} \mathrm{CO}, \mathrm{O}\left(m-\mathrm{CH}_{3} \mathrm{OC}_{6} \mathrm{H}_{3} \mathrm{CO}\right), \mathrm{L}=$ tertiary phosphine, $1 / 2$ diphenylphosphinoethane, can be isolated with both monodentate and chelating diphosphines, whereas for palladium only the compounds with chelating phosphines are readily obtainable. The reactions of $\left[\mathrm{Pt}\left(\mathrm{OC}_{6} \mathrm{H}_{4} \mathrm{CO}\right) \mathrm{L}_{2}\right.$] with HCl afford trans- $\left[\mathrm{PtCl}\left(\mathrm{OHC}_{6} \mathrm{H}_{4} \mathrm{CO}\right) \mathrm{L}_{2}\right], \mathrm{L}=$ monodentate tertiary phosphine and cis- $\left[\mathrm{PtCl}\left(\mathrm{OHC}_{6} \mathrm{H}_{4} \mathrm{CO}\right) \mathrm{L}_{2}\right], \mathrm{L}_{2}=1,2$-bis-diphenylphosphinoethane, in which the metal-carbon bond remains intact. The structure of [$\mathrm{Pt}\left(\mathrm{OC}_{6} \mathrm{H}_{4} \mathrm{CO}\right)$ -$\left(\mathrm{P}\left(p-\mathrm{CH}_{3} \mathrm{C}_{6} \mathrm{H}_{4}\right)_{3}\right)_{2}$] has been determined by X-ray diffraction methods and found to have the expected square planar structure. Some relevant bond lengths and angles are: Pt-P; 2.271(4) and 2.348(5) \&; Pt-C;1.96(2) \AA and $\mathrm{Pt}-\mathrm{O} ; 2.07(1) \AA ; \mathrm{P}-\mathrm{Pt}-\mathrm{P}=101^{\circ}, \mathrm{C}-\mathrm{Pt}-\mathrm{O}=82^{\circ}$.

Introduction

An acyl transition metal complex is now recognized to be a key intermediate in the homogeneously catalysed hydroformylation reaction [1]. The steps which lead to this type of molecule are now well known and both theoretical [2] and synthetic [3-6] studies have shown that the insertion of carbon monoxide into a metal-carbon bond is a crucial step. There are several other
possible routes to acyl derivatives and these include oxidative addition of an acyl halide by a complex containing the metal in a low oxidation state $[7,8]$ (e.g. reaction of RCOX with PtL_{4} [9] or reaction of a small cluster with an .aldehyde [10]. Several groups [10,11,12] have studied the activation of organic aldehydes by transition metals, since there is a potential interest in terms of a) new synthetic routes to organic molecules and b) mechanistic detail related to hydroformylation chemistry as the transformation:

is the reverse of the product forming step.
We have found that $\mathrm{K}_{2} \mathrm{PtCl}_{4}$ activates salicylaldehyde, (2-hydroxybenzalde-

hyde) so that complexes of the form $\left[\mathrm{Pt}\left(\mathrm{OC}_{6} \mathrm{H}_{4}\right) \mathrm{L}_{2}\right]$, may be obtained in high yield, $\mathrm{L}=\mathrm{a}$ variety of phosphine, arsine and nitrogen ligands [13]. We report here an extension of this chemistry to include a) new salicylaldehyde derivatives of both palladium(II) and platinum(II) and b) the structure of [$\left.\mathrm{Pt}\left(\mathrm{OC}_{6} \mathrm{H}_{4} \mathrm{CO}\right)\left(\mathrm{P}\left(p-\mathrm{CH}_{3} \mathrm{C}_{6} \mathrm{H}_{4}\right)_{3}\right)_{2}\right]$ as determined by X-ray diffraction methods.

Results and discussion

1. Synthesis and characterization

Like salicylaldehyde, the ligands 2-hydroxynaphthaldehyde and 2-hydroxy-

3 -methoxybenzaldehyde react as shown in scheme 1, and give the acyl complexes I-VIII in good yield (62-95\%).

The complexes were isolated as yellow solids, with the exception of IV, which was obtained as a yellow oil, and gave satisfactory microanalyses (see Table 1). All of these phosphine compounds afford ${ }^{31} \mathrm{P}\left\{{ }^{1} \mathrm{H}\right\}$ NMR spectra containing two doublets due to the non-equivalent spins P_{1} and P_{2} and the appropriate ${ }^{195} \mathrm{Pt}$ satellites ($I=1 / 2$, natural abundance $=34 \%$) for the complexes of this metal. The magnitude of the values ${ }^{2} J\left(\mathrm{P}_{1} \mathrm{P}_{2}\right)$ is consistent with a cis orientation of the two phosphorus spins [14], and the values ${ }^{1} J\left({ }^{195} \mathrm{Pt},{ }^{31} \mathrm{P}\right)$ are comparable with those found in related compounds [13]. The coupling constant data, along with the phosphorus chemical shifts, $\delta\left({ }^{31} \mathrm{P}\right)$, are given in Table 2. The assignment of P_{1} and P_{2} in the platinum derivatives follows directly from the known dependence of ${ }^{1 J}\left({ }^{195} \mathrm{Pt},{ }^{31} \mathrm{P}\right)$ on the rature of the trans ligand

SCHEME I

(I) Pd, diphos
(II) Pt, diphos
(III) $\mathrm{Pd}, \mathrm{Ph}_{2} \mathrm{PCH}=\mathrm{CHPPh}_{2}$
(IV) $\mathrm{Pt}, \mathrm{PEt}_{3}$

(Z) Pd, diphos
(VI) Pt, diphos

(VII) Pd, diphos
(要吕) $\mathrm{Pd}, \mathrm{Ph}_{2} \mathrm{PCH}=\mathrm{CHPPh}_{2}$
[14,15,16]. For the palladium compounds the interpretation is less certain and we base our assignment on previously developed empirical correlations of ${ }^{31} \mathrm{P}$ chemical shifts in palladium complexes [17,18]. Additional support for the proposed structures comes from ${ }^{1} \mathrm{H}$ NMR spectroscopy. The most obvious features here are the absence of an aldehyde proton resonance and, for $\mathrm{Ph}_{2} \mathrm{PCH}_{2}-$ $\mathrm{CH}_{2} \mathrm{PPh}_{2}$, a complex four proton grouping arising from the nonequivalent methylene groups.

The aromatic region of these ${ }^{1} \mathrm{H}$ spectra are complicated by the presence of the strong absorptions due to the PPh_{2} moiety; however, a complete analysis of the acyl fragment has proven possible for the complex IV and for the two

TABLE 1
ANALYTICAL AND IR DATA

Complex	Yield (\%)	Analysis found (calcd.) (\%)			$\operatorname{IR}(\nu(\mathrm{CO}))^{a}$
		C	H	P	
$I^{\text {b }}$	80	63.98(65.84)	4.49(4.48)		1630
$\mathrm{II}^{\text {c }}$	62	58.18(18.19)	4.01(3.96)		1594
III	95				1632
IV	62	85.60 (45.90)	6.12(6.03)	10.4(10.3)	
V	92	63.07(62.34)	4.78(4.62)	9.6(9.5)	1638
VI ${ }^{\text {b }}$	62	52.71(54.91)	4.07(4.20)	8.6(8.3)	1608
VII ${ }^{\text {b }}$	82	61.91(63.42)	4.52(4.52)	9.3(9.9)	1630
VIII ${ }^{\text {d }}$	79	62.63(63.62)	4.51(4.21)	9.9(10.0)	1640
XI ${ }^{\text {e }}$	95	60.56(61.28)	5.10(4.93)	6.43(6.45)	
XII	60	56.14(56.10)	3.85(3.80)		1610
XIII	61	53.55(53.37)	4.12(3.62)		1615

[^0]TABLE 2
${ }^{31}{ }^{1}\left\{{ }^{1} \mathrm{H}\right\}$ NMR DATA ${ }^{a}$ FOR THE ACYL COMPLEXES

Complex	$\delta\left(\mathrm{P}_{1}\right)$	$\delta\left(P_{2}\right)$	$2_{J}\left(\mathrm{P}_{1}, \mathrm{P}_{2}\right)$	$\left.{ }^{1} J^{195} \mathrm{Pt}^{1},{ }^{31} \mathrm{P}_{1}\right)$	${ }^{1}$ ($\left.{ }^{195} \mathrm{Pt},{ }^{31} \mathrm{P}_{2}\right)$
I	20.3	41.6	29		
II	36.0	29.8	10	1424	4364
III	24.4	40.5	7		
IV	12.8	13.8	10	1397	4239
v	22.5	44.8	32		
VI	37.5	30.7	9	1496	4254
VII	22.9	45.3	31		
VIII	27.9	44.2	10		
XI	19.9			3238	
	18.0			3207	
XIII ${ }^{\text {b }}$	19.9			3220	
XIV ${ }^{\text {b }}$	16.2			3196	

${ }^{\alpha}$ Data are for CDCl_{3} solutions at room temperature: coupling constants are in Hz , chemical shifts in ppm relative to external $\mathrm{H}_{3} \mathrm{PO}_{4}$. A positive sign indicates a low field (high frequeney) shift. ${ }^{\boldsymbol{b}}$ In $\mathbf{C H}_{2} \mathrm{Cl}_{2} i$ $\mathrm{CD}_{2} \mathrm{Cl}_{2}$.
methoxy derivatives V and VI. In all the naphthyl complexes $\mathrm{H}(8)(\delta 8.62-$

(IV)

(五, 而)
9.04 ppm) resonates at much lower field than the remaining protons. For 2-hydroxynaphthaldehyde this signal appears at $\delta 8.20 \mathrm{ppm}$, and therefore the complexation of the aldehyde carbon induces a substantial low field shift of this proton. Presumably the rigid nature of the acyl chelate prevents carbonyl rotation, thus fixing the nearly $\mathrm{H}(8)$ in a deshielding region of the carbonyl bond. A summary of the proton NMR data may be found in Table 3.

We have successfully isolated yellow palladium intermediates which we believe have the composition $\left[\mathrm{Pd}\left(\mathrm{OC}_{6} \mathrm{H}_{4} \mathrm{CO}\right) \mathrm{L}_{1} \mathrm{~L}_{2}\right]^{-},\left[\mathrm{Pd}\left(\mathrm{OC}_{10} \mathrm{H}_{6} \mathrm{CO}\right) \mathrm{L}_{2} \mathrm{~L}_{2}\right]^{-}$, $L_{1}=\mathrm{Cl}, \mathrm{L}_{2}=\mathrm{DMSO}$, as sodium and potassium salts, respectively. The proton NMR data for these complexes, IX and X, are in reasonable agreement with those for I-VIII.

Reaction of IX and X with $\mathrm{Ph}_{2} \mathrm{PCH}_{2} \mathrm{CH}_{2} \mathrm{PPh}_{2}$ affords the more readily purified compounds I and VII and confirms our previous suggestion that step b in Scheme 1 is of secondary importance in terms of the activation of the aldehyde. Indeed with $\mathrm{K}_{2} \mathrm{PdCl}_{4}$ and DMSO as solvent, the reaction temperature plays a critical role. At $100^{\circ} \mathrm{C}$, with triphenylphosphine as ligand, we obtained a 51% yield of the phenolate complex trans- $\left[\mathrm{Pd}\left(\mathrm{OC}_{6} \mathrm{H}_{4} \mathrm{CHO}\right)\left(\mathrm{PPh}_{3}\right)_{2}\right]$ as its mono DMSO solvate $\left(\delta\left({ }^{31} \mathrm{P}\right)=19.2, \delta\left({ }^{1} \mathrm{H}\right)=9.83\right.$ for CHO ; IR: $\nu(\mathrm{CO})=1650$

TABLE 3
SOME ${ }^{1}{ }^{1}$ NMR DATA ${ }^{\boldsymbol{a}}$ FOR THE COMPLEXES

Complex		H(3)	H(4)	H(5)	H(6)	H(7)	$\mathrm{H}(8){ }^{\text {b }}$
IV	δ	6.68	7.25	7.29	6.75	7.00	8.90
	J	$\mathrm{H}_{3}, \mathrm{H}_{4}=\mathbf{9 . 0}$		$\mathrm{H}_{5}, \mathrm{H}_{6}=8.2$	$\mathrm{H}_{6}, \mathrm{H}_{7}=6.9$	$\mathrm{H}_{7}, \mathrm{H}_{8}=8.6$	
				$\mathrm{H}_{5}, \mathrm{H}_{7}=1.7$			
v^{c}	δ		6.77	6.22	6.69		
	J		$\mathrm{H}_{4}, \mathrm{H}_{5}=7.7$	$\mathrm{H}_{5}, \mathrm{H}_{6}=7.1$			
			$\mathrm{H}_{4}, \mathrm{H}_{6}=1.6$				
VI ${ }^{\text {d }}$	δ		6.77	6.31	6.85		
	J		$\begin{aligned} & \mathrm{H}_{4}, \mathrm{H}_{5}=7.3 \\ & \mathrm{H}_{4}, \mathrm{H}_{6}=1.5 \end{aligned}$	$\mathrm{H}_{5}, \mathrm{H}_{6}=7.9$			
IX	δ	7.18	$7.61{ }^{e}$	$7.61{ }^{\text {e }}$	7.10	7.34	8.52
	J	$\mathrm{H}_{3}, \mathrm{H}_{4}=9.4$	$\mathrm{H}_{4}, \mathrm{H}_{5}=7$			$\mathrm{H}_{7}, \mathrm{H}_{8}=9.0$	

${ }^{a} \mathrm{CDCl}_{3}$ solutions at room temperature. ${ }^{b} \delta(\mathrm{H}(8))$ for $\mathrm{I}-\mathrm{III}=8.66,9.04$ and 8.62 ppm , respectively. In acetone- $d_{6} .{ }^{c} \mathrm{OCH}_{3}=\delta 3.83 \mathrm{ppm}$; assignment $\mathrm{H}(4)$ and $\mathrm{H}(6)$ is tentative. ${ }^{d} \mathrm{OCH}_{3}=\delta 3.93 \mathrm{ppm}$; assignment $H(4)$ and $H(6)$ is tentative. ${ }^{2} H(4)$ and $H(5)$ have very similar chemical shifts. Measured in acetone- d_{6}.
cm^{-1}). This observation supports our earlier supposition that deprotonation of the phenol oxygen and subsequent substitution precede attack at the aldehyde carbon.

Although we have successfully prepared platinum acyl complexes with both chelating and monodentate phosphines, the palladium complexes with PPh_{3} and PEt_{3} ligands afford stable yellow solids of a different composition. Preliminary evidence (see Experimental) suggests that these are acyl compounds with only one PPh_{3} ligand, which are dynamic on the NMR time scale at room temperature. Low temperature ${ }^{31} \mathrm{P}$ measurements in the presence of an excess of PPh_{3} reveal that $\left[\mathrm{Pd}\left(\mathrm{OC}_{6} \mathrm{H}_{4}\right)\left(\mathrm{PPh}_{3}\right)_{2}\right]$ can be generated in situ: $\delta\left({ }^{31} \mathrm{P}\right)=35.6$, $11.5,{ }^{2} J\left(\mathrm{P}_{1} \mathrm{P}_{2}\right)=32 \mathrm{~Hz}$; however, these acyl complexes are considerably more labile than their platinum analogs.

2. Reactivity

To gain further insight into the nature of the acyl-metal bond we have treated several of our complexes with gaseous HCl . In $\mathrm{CHCl}_{3},\left[\mathrm{Pt}\left(\mathrm{OC}_{6} \mathrm{H}_{4} \mathrm{CO}\right)\right.$ ($\left.\mathrm{P}\left(p-\mathrm{XC}_{6} \mathrm{H}_{4}\right)_{3}\right)_{2} \mathrm{I}, \mathrm{X}=\mathrm{H}, \mathrm{CH}_{3}$ both react to give $>90 \%$ yields of the compounds trans- $\left[\mathrm{PtCl}\left(\mathrm{OHC}_{6} \mathrm{H}_{4} \mathrm{CO}\right)\left(\mathrm{P}\left(p-\mathrm{XC}_{6} \mathrm{H}_{4}\right)_{3}\right)_{2}\right], \mathrm{X}=\mathrm{H}(\mathrm{XI}), \mathrm{CH}_{3}(\mathrm{XII})$ as yellow crystalline materials. The phenol oxygen is protonated and no longer coordinated whereas the acyl carbon is still bound. The trans geometry is indicated by the single ${ }^{31} \mathrm{P}$ resonance (e.g. for XI $\delta\left({ }^{31} \mathrm{P}\right)=19.9,{ }^{1} J\left({ }^{195} \mathrm{Pt},{ }^{31} \mathrm{P}\right)=3238 \mathrm{~Hz}$), whereas the presence of a platinum-chloride bond is suggested by new bands in the IR at $275 \mathrm{~cm}^{-1}$ and $280 \mathrm{~cm}^{-1}$ for XI and XII, respectively. For $\left[\mathrm{PtCl}\left(\mathrm{OHC}_{6} \mathrm{H}_{4} \mathrm{CO}\right)\left(\mathrm{PPh}_{3}\right)_{2}\right]$ metathesis reactions lead smoothly to the corresponding trans-bromide (XIII) and -iodide (XIV) complexes. An interesting feature of the ${ }^{1} \mathrm{H}$ spectrum of XII concerns the phenolic proton which appears at $\delta 11.15 \mathrm{ppm}$. This somewhat unusual chemical shift probably derives from a structure such as XV which has the proton bound to both oxygens via a hydrogen bond. In support of this we observe a coupling constant of 6 Hz between the phenolic proton and platinum. The complexes [$\mathrm{M}\left(\mathrm{OC}_{6} \mathrm{H}_{4} \mathrm{CO}\right)$ (diphos)],

(XV)

$$
\mathrm{R}=\mathrm{m}-\mathrm{CH}_{3} \mathrm{C}_{6} \mathrm{H}_{4}
$$

$\mathrm{M}=\mathrm{Pd}, \mathrm{Pt}$, also react with HCl to afford the analogous chloro(acyl) complexes. These seem more reactive, perhaps as a result of the trans disposition of acyl and phosphorus ligands, and further work on them is in progress. All the platinum acyl-metal bonds seem relatively resistant to cleavage by $\mathbf{H C l}$.
3. X -ray structure of $\left[\mathrm{Pt}\left(\mathrm{OC}_{6} \mathrm{H}_{4} \mathrm{CO}\right)\left(\mathrm{P}\left(\mathrm{p}-\mathrm{CH}_{3} \mathrm{C}_{6} \mathrm{H}_{4}\right)_{3}\right)_{2}\right]$

In view of the general interest in acyl complexes as well as the relative stability of the platinum-acyl bond, we felt it worthwhile to determine the structure of one of our chelating acyl compounds, and found the salicylaldehyde tri-p-trolyl phosphine derivative to be suitable.

The crystal structure consists of discrete molecules of complex and disordered molecules of CHCl_{3}. Figure 1 shows a perspective view of the molecule indicating the atom numbering scheme used. A selection of bond lengths and angles is reported in Table 4.

The coordination around the platinum atom is square-planar, with the two phosphine ligands in the expected cis positions and the salicylaldehyde residue acting as a chelate ligand complexing through the phenolic oxygen and the aldehyde carbon atoms. There are only small deviations of the atoms involved in platinum-ligand binding from the calculated least-squares plane through these atoms. Significant deviations from the regular angles of the square-plane are found in the observed bond angles about platinum, partially as a result of the small chelate bite of the salicylaldehyde residue $\left[\mathrm{O}(1)-\mathrm{Pt}-\mathrm{C}(7)=82.1(6)^{\circ}\right]$ and partly due to the two bulky $\mathrm{P}\left(\rho-\mathrm{CH}_{3} \mathrm{C}_{6} \mathrm{H}_{4}\right)_{3}$ ligands $[\mathrm{P}-\mathrm{Pt}-\mathrm{P}=$ $\left.101.0(2)^{\circ}\right]$.

The two $\mathrm{Pt}-\mathrm{P}$ bond distances [2.271(4) and 2.348(5) \AA] differ significantly $(\sim 17 \sigma)$. The longer Pt- $\mathrm{P}(2)$ bond, trans to $\mathrm{C}(7)$, indicates the stronger trans-influence of carbon compared with oxygen. Similar results have been observed in the complexes cis-[PtCl(3-chloro-1,1,3,3-tetrafluoropropan-Z-one)$\left.\left(\mathrm{PPh}_{3}\right)_{2}\right] \mathrm{Pt}-\mathrm{P}=2.247(5)$ and 2.362(5) $\AA[19]$, $\operatorname{cis}-\left[\mathrm{PtF}\left\{\mathrm{CH}\left(\mathrm{CF}_{3}\right)_{2}\right\}\left(\mathrm{PPh}_{3}\right)_{2}\right]$, $\mathrm{Pt}-\mathrm{P}=2.218$ (7) and 2.310(7) \AA [20] and 3,3,4-tricyano-2,2,-bis(triphenyl-phosphine)-1-oxa-2-platinacyclobutane $\mathrm{Pt}-\mathrm{P}=2.247$ (6) and 2.311(6) \AA [21] all of which contain cis PPh_{3} ligands, a carbon ligand and a fourth ligand of much smaller trans influence. Differences of $0.07-0: 10 \AA$ are generally reported between $\mathrm{Pt}-\mathrm{P}$ bond distances trans to carbon [22] and those trans to oxygen [23]. The $\mathrm{Pt}-\mathrm{C}(7)$ bond distance of $1.96(2) \AA$ is comparable with values of 1.95 to $2.06 \AA$ found for other Pt-C $\left(s p^{2}\right)$ distances [24-27], and in excellent agreement with X-ray data for palladium and platinum acyl complexes (see Table 5). The Pt-O(1) bond distance of $2.07(1) \AA$ is in the range

TABLE 4
SELECTED BOND LENGTHS (A) AND ANGLES (${ }^{\circ}$)

Pt-P(1)	$2.271(4)$	$\mathrm{P}(1)-\mathrm{Pt}-\mathrm{P}(2)$	101.0(2)
Pt-P(2)	2.348 (5)	$\mathrm{P}(1)-\mathrm{Pt}-\mathrm{C}(7)$	87.4(4)
Pt-C(7)	1.96(2)	$\mathrm{P}(1)-\mathrm{Pt}-\mathrm{O}(1)$	164.7(3)
$\mathrm{Pt}-\mathrm{O}(1)$	2.07(1)	$\mathrm{P}(2)-\mathrm{Pt}-\mathrm{C}(7)$	$171.6(4)$
$C(6)-C(1)$	1.39(3)	$\mathrm{P}(2)-\mathrm{Pt}-\mathrm{O}(1)$	89.4(4)
C(6)-C(7)	1.47(2)	C(7)-Pt-O(1)	82.1(6)
$\mathrm{C}(1)-\mathrm{C}(2)$	1.40(2)	$\mathrm{Pt}-\mathrm{C}(7)-\mathrm{O}(2)$	132.6(12)
C(1)-O(1)	1.37(2)	$\mathrm{Pt}-\mathrm{C}(7)-\mathrm{C}(6)$	113.7(14)
C(2)-C(3)	1.35(3)	$\mathrm{O}(2)-\mathrm{C}(7)-\mathrm{C}(6)$	113.0(18)
C(3)-C(4)	1.41(4)	$\mathrm{Pt}-\mathrm{O}(1)-\mathrm{C}(1)$	109.5(10)
C(4)-C(5)	1.41(3)	$\mathrm{C}(6)-\mathrm{C}(1)-\mathrm{C}(2)$	119.4(18)
C(5)-C(6)	1.38(3)	$\mathrm{C}(6)-\mathrm{C}(1)-\mathrm{O}(1)$	120.5(13)
$\mathrm{C}(7)-\mathrm{O}(2)$	1.20(3)	$\mathrm{C}(2)-\mathrm{C}(1)-\mathrm{O}(1)$	120.0(19)
		C(1)-C(2)-C(3)	119.9(23)
		$C(2)-C(3)-C(4)$	122.0(18)
		C(3)-C(4)-C(5)	117.7(21)
		$\mathrm{C}(4)-\mathrm{C}(5)-\mathrm{C}(6)$	120.2(22)
		$\mathrm{C}(5)-\mathrm{C}(6)-\mathrm{C}(1)$	120.8(15)
		C(5)-C(6)-C(7)	126.7(19)
		$C(1)-C(6)-C(7)$	112.3(17)

TABLE 5
RELEVANT BOND LENGTHS IN ACYL COMPLEXES

Compound	Distance (A)		
	$\mathbf{M - C}$	C-O	Ref.
$\left.\left[\mathrm{Pt}_{2}(\mu-\mathrm{Cl})_{2} \mathrm{CCOEt}\right)_{2}\left(\mathrm{PMM}_{2} \mathrm{Ph}\right)_{2}\right]$	$1.972(5)$	1.208(7)	29
$\left[\mathrm{PtCl}_{2}\left(\mathrm{CONPr}_{2}\right) \mathrm{COI}^{-}\right.$	1.96(2)	1.36(3)	30
trans-[PdCl(COPr ${ }^{\text {n }}$)($\left.\left.\mathrm{PPH}_{3}\right)_{2}\right]$	1.974 (10)	1.210(11)	31
[$\left.\mathrm{PdCl}\left(\mathrm{COCH}_{2} \mathrm{CH}(\mathrm{R}) \mathrm{NEt}_{2}\right)\left(\mathrm{NHEt}_{2}\right)\right]$	1.95(1)	1.13(2)	32
[$\left.\mathrm{Pt}\left(\mathrm{OC}_{6} \mathrm{H}_{4} \mathrm{CO}\right)\left(\mathrm{P}\left(\mathrm{p}-\mathrm{CH}_{3} \mathrm{C}_{6} \mathrm{H}_{4}\right)_{3}\right)_{2}\right]$	1.96(2)	1.20(3)	this work

observed for other Pt - O distances, but it is longer than usually found in salicylaldehyde derivatives, in which $\mathrm{Pd}-\mathrm{O}$ and $\mathrm{Pt}-\mathrm{O}$ bond lengths fall in the range 1.90-2.00 [23,28].

Apart from the aryl groups the molecule is roughly planar, and the salicylaldehyde moiety has fairly regular geometry. Interestingly, the acyl carbon-oxygen bond lengths, $1.20 \AA$, is similar to those in $\left[\mathrm{Pt}_{2}(\mu-\mathrm{Cl})_{2}(\mathrm{COEt})_{2}\left(\mathrm{PMe}_{2} \mathrm{Ph}\right)_{2}\right]$, $1.208(7) \AA[29]$ and trans- $\left[\mathrm{PdCl}\left(\mathrm{COPr}^{n}\right)\left(\mathrm{PPh}_{3}\right)_{2}\right] 1.210(11) \AA[31]$, which, in turn resemble normal conjugated carbon-oxygen double bond distances ($\sim 1.207(6)$ [33]). The phosphine ligands have distorted tetrahedral geometry, with the $\mathrm{Pt}-\mathrm{P}-\mathrm{C}$ and $\mathrm{C}-\mathrm{P}-\mathrm{C}$ angles averaging 114.8(4) and 105.1(5) ${ }^{\circ}$, respectively. The six $\mathrm{P}-\mathrm{C}$ distances, as well as the six $\mathrm{C}-\mathrm{CH}_{3}$ distances in the tolyl groups, are not signficantly different from one another and average 1.841(10) and $1.53(2) \AA$, respectively.

The geometry of the solvent CHCl_{3} molecule, which is disordered in two distinct positions, is of limited accuracy (mean values of $1.72 \AA$ and 111° are found for the $\mathrm{C}-\mathrm{Cl}$ distances and $\mathrm{Cl}-\mathrm{C}-\mathrm{Cl}$ angles).

Conclusions

Our results show that palladium and platinum acyl complexes are obtainable in good yield from salicylaldehyde derivatives. For Pd ${ }^{I I}$ the chelating nature of both the acyl and tertiary phosphine ligands seem to contribute to the stability of the complex. The most basic site in terms of attack by HCl seems to be the coordinated oxygen, and in support of this we find a rather long Pt-O distance in the solid state. The square planar molecular structure of the complex is maintained both in the solid and solution, and there seem to be no unusual strains within the molecule. Indeed the Pt-CO distance is quite normal. Given the inertness of the platinum-carbon bond towards H^{+}it will be interesting to see if these molecules behave like organic ketones.

Experimental

Crystal data

Yellow crystals of $\left[\mathrm{Pt}\left(\mathrm{OC}_{6} \mathrm{H}_{4} \mathrm{CO}\right)\left(\mathrm{P}\left(p-\mathrm{CH}_{3} \mathrm{C}_{6} \mathrm{H}_{4}\right)_{3}\right)_{2}\right]$ were obtained by slow evaporation of a CHCl_{3} solution. A disordered molecule of CHCl_{3} per molecule of complex was found during the X-ray analysis. A summary of crystal data is given in Table 6.

TABLE 6
CRYSTAL DATA

Formula	$\mathrm{C}_{50} \mathrm{H}_{47} \mathrm{Cl}_{3} \mathrm{O}_{2} \mathrm{P}_{2} \mathrm{Pt}$
Formula-Wt.	1043.32
Cell constants ${ }^{\text {a }}$	
	$b=14.306(5) A \quad \beta=90.35(2)^{\circ}$
	$c=16.360(3) \AA \quad \gamma=109.33(3)^{\circ}$
	$V_{-}=2511(1) \AA^{3}$
Space group	P I (triclinic, $Z=2)$
Density ($\mathrm{g} \mathrm{cm}^{-3}$)	1.380 (calc.), 1.385 (10) (exper.) ${ }^{\text {b }}$
$\mu\left(\mathrm{Cu}-\mathrm{K}_{\alpha}\right)\left(\mathrm{cm}^{-1}\right)$	76.68

${ }^{a}$ Determined by least-squares from the measured angular positions of 15 reflections. ${ }^{b}$ Measured by flotation in ZnI_{2} solution.

Intensity measurement

Intensities were measured with an automatic diffractometer Syntex P2 1_{1}, using graphite-monochromated $\mathrm{Cu}-K_{\alpha}$ radiation $\left(\theta_{\text {max }}=58^{\circ}, \omega\right.$-scan range $=$ 1.0°). The processed data were corrected for the usual factors and for the shape anisotropy effect. Of the unique data collected 5473 independent reflections with $I>3 \sigma(I)$ were used in the subsequent analysis.

Structure analysis and refinement

The structure was solved by the heavy atom method and refined by leastsquares to a final R of 0.076 ($R_{\mathrm{w}}=0.086$). The fixed contribution of the hydrogen atoms, geometrically positioned, was included in the last cycles during which all the heavier atoms but those of the tolyl rings were allowed to vibrate anisotropically.

The refinement was carried out with a six-blocks approximation of the nor-mal-equation matrix; the function minimized was $\Sigma \omega\left(\left|F_{0}\right|-\left|F_{0}\right|\right)^{2}$ with $w=$ $4 F_{0}{ }^{2} / \sigma^{2}\left(F_{0}{ }^{2}\right)$. Phenyl rings were refined as rigid groups ($D_{\text {oh }}$ symmetry, $\mathrm{C}-\mathrm{C}=$ $1.392 \AA$). Scattering factors and anomalous dispersion terms were taken from International Tables for X-ray Crystallography [34]. The calculations were performed with local programs on the UNIVAC 1100/20 computer of the University of Rome and on the HP 21MS minicomputer of the CNR Research Area.

Bruker WM-250 and HX-90 spectrometers were used for the NMR measurements. ${ }^{1} \mathrm{H}$ and ${ }^{31} \mathrm{P}$ NMR spectra were measured as CDCl_{3} solutions for I-III, V-VIII and XI-XIV. The ' H spectra of IV, IX and X were measued in ace-tone- d_{6}. For IX and X this is necessary due to their poor solubility in CDCl_{3} whereas for IV we chose to avoid the problem of potential overlap of the CHCl_{3} signal by using acetone. Chemical shifts are in ppm (± 0.1 for ${ }^{31} \mathrm{P}, \pm 0.01$ for ${ }^{1} \mathrm{H}$) and coupling constants are in $\mathrm{Hz}\left(\pm 3 \mathrm{~Hz}\right.$ for ${ }^{31} \mathrm{P}, \pm 0.6$ for ${ }^{1} \mathrm{H}$). IR spectra were measured as KBr pellets using a Beckmann IR 4250. Microanalyses were performed by the microanalytical Laboratory of the ETH Zürich.

The three aldehydes were purchased from Fluka AG, Buchs, Switzerland. $\mathrm{Na}_{2} \mathrm{PdCl}_{4}$ and $\mathrm{K}_{2} \mathrm{PdCl}_{4}$ were prepared from PdCl_{2} (Johnson-Matthey) and a stoichiometric amount of the appropriate chloride salt. The chelating phosphines were commercially available from STREM Chemicals, USA.

Preparation of $\left[\mathrm{Pd}\left(\mathrm{OC}_{10} \mathrm{H}_{6} \mathrm{CO}\right)(\right.$ diphos $\left.)\right]$ (I)
A stirred solution of $\mathrm{Na}_{2} \mathrm{PdCl}_{4}(0.200 \mathrm{~g}, 0.679 \mathrm{mmol})$ in 10 ml DMSO at $100^{\circ} \mathrm{C}$ was treated sequentially with $\mathrm{Na}_{2} \mathrm{CO}_{3}(0.216 \mathrm{~g}, 2.04 \mathrm{mmol})$ and 2-hy-droxy-1-naphthaldehyde ($0.117 \mathrm{~g}, 0.679 \mathrm{mmol}$). The temperature was raised to $140^{\circ} \mathrm{C}$, maintained at this point for 0.5 h and then reduced to $100^{\circ} \mathrm{C}$ at which time solid diphos ($0.270,0.679 \mathrm{mmol}$) was introduced. Further cooling to $60^{\circ} \mathrm{C}$ was followed by removal of the solvent under vacuum. The residue was extracted with methylene chloride, and the filtered extract treated with active charcoal, filtered again, and finally concentrated to give the product as a deepyellow powder ($0.367 \mathrm{~g}, 80 \%$ yield).

The same method was employed for complexes II, III, V and VI using the appropriate potassium (instead of sodium) tetrahalide complex.

Preparation of the anionic complexes $\mathrm{Na}\left[\mathrm{Pd}\left(\mathrm{OC}_{6} \mathrm{H}_{4} \mathrm{CO}\right) \mathrm{Cl}(\mathrm{DMSO})(\mathrm{IX})\right.$ and

 $K\left[P d\left(O C_{10} H_{6} \mathrm{CO}\right) C l(D M S O)\right](X)$The same preparation procedure was employed as for I, except that the mixture was cooled directly from 140 to $60^{\circ} \mathrm{C}$, and that, after solvent removal, extraction was carried out with acetone. Filtration was followed by concentration to give the product. From $\mathrm{Na}_{2} \mathrm{PdCl}_{4}(0.200 \mathrm{~g}, 0.679 \mathrm{mmol})$ and salicylaldehyde ($0.083 \mathrm{~g}, 0.679 \mathrm{mmol}$) we obtained 0.200 g of IX (81% yield) as a yellow powder. From $\mathrm{K}_{2} \mathrm{PdCl}_{4}(0.250 \mathrm{~g}, 0.613 \mathrm{mmol})$ and 2-hydroxy-1-naphthaldehyde ($0.106 \mathrm{~g}, 0.613 \mathrm{mmol}$) we obtained 0.115 g of X (43% yield) also as a yellow solid.

Synthesis of the palladium salicylaldehyde complex with $P P h_{3}$
An identical procedure to that used for the synthesis of I was employed. From $\mathrm{Na}_{2} \mathrm{PdCl}_{4}$ ($200 \mathrm{mg}, 0.613 \mathrm{mmol}$), salicylaldehyde ($75 \mathrm{mg}, 0.613 \mathrm{mmol}$) and $\mathrm{PPh}_{3}(322 \mathrm{mg}, 1.226 \mathrm{mmol})$ we obtained a yellow powder $(0.293 \mathrm{~g}, 64 \%)$ whose NMR characteristics were consistent with a complex having the coordinated acyl ligand and one PPh_{3}. The compound is either a mixture of isomers or impure, and we find two signals in the ${ }^{31} \mathrm{P}$ NMR spectrum, $\delta 38.7$ and 39.1 ppm. The microanalytical data found: $\mathrm{C}, 60.5 ; \mathrm{H}, 4.25 ; \mathrm{P}, 5.78 ; \mathrm{Cl}, 0.09 \%$ are consistent with $\mathrm{Pd}\left(\mathrm{OC}_{6} \mathrm{H}_{4} \mathrm{CO}\right)\left(\mathrm{PPh}_{3}\right), \mathrm{C}_{29} \mathrm{H}_{19} \mathrm{O}_{2} \mathrm{PPd}$ calcd.: $\mathrm{C}, 61.6 ; \mathrm{H}, 3.9 ; \mathrm{P}$, 6.4%. The solution molecular weight is 841 (calcd. for $\mathrm{Pd}\left(\mathrm{OC}_{6} \mathrm{H}_{4} \mathrm{CO}\right)\left(\mathrm{PPh}_{3}\right)$ is 487). It is possible that the complex is dimeric, with bridging oxygen atoms.

Acknowledgements

We thank Dr. H. Motschi and Mr. U. Goldener for experimental help.

References

1 G.W. Parshall, J. Molecular Catal., 4 (1978) 243.
2 H. Berke and R. Hoffmann. J. Amer. Chem. Soc.. 100 (1978) 7224. 3 F. Calderazzo, Angew. Chem., 89 (1977) 305.
4 P.E. Garrou and R.F. Heck. J. Amer. Chem. Soc., 98 (1976) 4115.
5 N. Sugita, J.V. Minkiewicz and R.F. Heck, Inorg. Chem., 17 (1978) 2809.
6 G. Booth and J. Chatt, J. Chem. Soc. A. (1966) 634.
7 D.R. Fahey and J.E. Mohan, J. Amer. Chem. Soc.. 99 (1977) 250.
8 M.A. Bennett and J.C. Jeffrey, Inorg. Chem., 19 (1980) 3763.

9 C.D. Cook and G.S. Jauhal, Canad. J. Chem., 45 (1967) 301.
10 K. Azam, A.J. Deeming and I.P. Rothwell, J. Organometal. Chem., 178 (1979) C20.
11 K. Azam, A.J. Deeming and I.P. Rothwell, J. Chem. Soc. Dalton. (1981) 91.
12 T. Rauchfuss, J. Amer. Chem. Soc., 101 (1979) 1045.
13 H. Motschí, P.S. Pregosin and H. Ruegger, J. Organometal. Chem., 193 (1980) 397.
14 P.S. Pregosin and R.W. Kunz in P. Diehl, E. Fluck and R. Kosfeld (Eds.), NMR Basic Principles and Progress, Vol. 16, Springer-Verlag Berlin, 1979 and references therein.
15 A. Pidcock, R.E. Richards and L.M. Venanzi, J. Chem. Soc. A, (1966) 1707.
16 F.H. Allen, A. Pidcock and C.R. Waterhouse, J. Chem. Soc. A, (1970) 2087.
17 S.O. Grim and R.L. Keiter, Inorg. Chim. Acta. 4 (1970) 56.
18 G. Balimann and P.S. Pregosin, J. Magn. Reson., 22 (1976) 235.
19 D.R. Russell and P.A. Tucker, J. Chem. Sac. Dalton, (1975) 2222.
20 J. Howard and P. Woodward, J. Chem. Soc. Dalton, (1973) 1840.
21 M. Lenarda, N. Bresciani Pahor, M. Calligaris, M. Graziani and L. Randaccio, J. Chem. Soc. Dalton, (1978) 279.

22 R. Ros, M. Lenarda, N. Bresciani Pahor, M. Calligaris, P. Delise, L. Randaccio and M. Graziani, J. Chem. Soc. Dalton, (1976) 1937.
23 W. Back, E. LeidI, M. Kembler and U. Nagel. Chem. Ber.. 113 (1980) 1790.
24 E.M. Badley, J. Chatt, R.L. Richards and G.A. Sim, Chem. Commun. (1969) 1322.
25 D.J. Cardin, B. Cetinkaya, M.F. Lappert, L. Manojlovic Muir and K.W. Muir, Chem. Commun., (1971) 400.

26 W.M. Butler, J.H. Enemark. J. Parks and A.L. Baich, Inorg. Chem., 12 (1973) 451.
27 M.B. Butler and J.H. Enemark, Inorg. Chem., 12 (1973) 540.
28 H. Motschi, C. Nussbaumer, P.S. Pregosin, F. Bachechi, P. Mura and L. Zambonelli, Helv. Chim. Acta, 63 (1980) 2071; A. Chakravorty, Coord. Chem. Rev., 13 (1974) 1.
29 G.K. Anderson, R.J. Cross, L.M. Muir, K.W. Muir and T. Solomun, J. Organometal. Chem.. 170 (1979) 385.

30 D.B. Dell'Amico, F. Calderazzo and G. Pelizzi, Inorg. Chem., 18 (1979) 1165.
31 R. Bardi, A. Del Pra, A.M. Piazzesi and L. Toniolo, Inorg. Chim. Acta, 35 (1979) L345.
32 L.S. Hegedus, O.P. Anderson, K. Zetterberg, G. Allen, K. Siirala-Hansen, D.J. Olsen and A.B. Fackard, Inorg. Chem., 16 (1977) 1887.
33 International Tables for X-ray Crystallography, Vol. 3, Kynoch Press, Birmingham, England 1968, p. 276.

34 International Tables for X-ray Crystallography, Vol. IV, Kynoch Press, Birmingham, England, 1974, Tables 2.3B and 2.3.1.

[^0]: ${ }^{a}$ As KBr pellets, in $\mathrm{cm}^{-1} .^{b}$ These acyl complexes show a tendency to lose $\mathbf{C O}$ when heated. Consequently, the $\% \mathrm{C}$ found is often slightly too low. ${ }^{c}$ Molecular weight (osmometric in $\mathrm{CH}_{2} \mathrm{Cl}_{2}$): $\mathbf{7 6 9}$ (764). ${ }^{\text {d }}$ Molecular weight (osmometric $\mathrm{CH}_{2} \mathrm{Cl}_{2}$) 586 (623). ${ }^{e} \mathrm{Cl}: 4.26$ (3.69) \%.

